Program Outcome of this course

Sl.	Description	POs
No.		
1	Qualitative improvement in Civil Engineering education	P01
2	Usage of Geospatial technologies in problem solving	P02
3	Sustainable development of cities and communities	P03
4	Understand Environment and develop climate smart action plans	P04
5	Natural Resource management and disaster resilience	P05
6	Critical Analysis of problems and Innovations in developmental planning.	P06
7	Design and development of Geoinformatics- based solutions.	P07
8	Subject specific skill development	P08
9	Socio-economic development through efficient project management	P09
10	Providing inputs for transparent administration through e-governance	P010
11	Innovation and creativity through research and development	P011
12	Entrepreneurship	P012

Semester- II (PCC)

Course Code	devinition matters m	Natural Resource and Environment 22CGI21	CIE Marks	50
Course Code	s/Week (L:P:SDA)	2:0:2	SEE Marks	50
Total Hours of			Total Marks	100
1000111001501	i cuagogy	25 Hours of teaching +10-12 sessions of SDA	i otai mai KS	100
Credits		03	Exam Hours	03.00
i) To	ing objectives: o understand the concept nctioning.	s of natural resources management, lin	kages with econom	ıy, Earth system
		tainable development and prepare suit	able action plans fo	or sustaining the
iii) To	-	h geospatial technologies, and formatics in assessing the natural reso	urces and monitori	ng the changes in
		Module-1		
the economy, geological stru	impact of natural resou ctures and lithological m	agement: Types of natural resources rces utilization on Earth system func apping, Mineral resources mapping, cla and and soil in the climate system.	tioning, Geomorph	ological Mapping
Teaching- Learning Process	by eminent authors th formations in Karnatak	the fundamentals of NRM and EnM pro hrough audio-visual technologies. Fig a, conducting a quick soil survey in the wledge about land resources (The abiot	eld visit to miner nearby university	al rich geologica campus, students
	*	Module-2	*	
Mapping of fo	rest types, Forest biomas re remote sensing applica Encouraging studen		working plans / s	chemes, Thermal t of internal tests,
		Module-3		
monitoring of hydro-electric prospecting a Teaching-	f precipitation (rainfall a c power plants, Digital nd recharging maps. Interactive/participativ	urface water resources mapping a and snow cover), Integrated river bas Terrain Models and their application e methods, through lectures, discussion	in management, Si ons, preparation o	te suitability for of ground water ion, study
Learning Process	assignments. Students v	vill learn the use of geoinformatics in w	ater resources mar	nagement.
		Module-4		
and ecosystem	n functioning and servio	opment: Components of environment, ces, Applications in EIA and EMP, qu opment, Watershed-based Acton Plans f	antifying impacts	of developmenta
	Structured lectures three	ough PPTs, seminar methods where the	faculty member /	instructor himself
Teaching- Learning Process		ons, on the components of environment		

Environmental Pollution Applications: Point and non-point source pollution, methane production area mapping and modelling, oil slicks tracing and monitoring, turbidity and sedimentation mapping, Groundwater-pollution hazard assessment, Aerosol remote sensing, air quality indexing and mapping, Use of RS+GIS in studying ecology of vector-borne diseases, public health administration.

Teaching-
LearningThe faculty members conduct field visits to polluting industries, crop lands treated with
agrochemicals, consulting research papers, case studies, and success stories describing the use of
geoinformatics in managing environmental pollution.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% (50 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- 9. Three Unit Tests each of **20 Marks**
- **10.** Two assignments each of **20 Marks**or**oneSkill Development Activity of 40 marks** to attain the COs and POs

The sum of three tests, two assignments/skill Development Activities, will be scaled down to 50 marks

CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- 5. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 6. The question paper will have ten full questions carrying equal marks.
- 7. Each full question is for 20 marks. There will be two full questions (with a maximum of four sub-questions) from each module.
- 8. Each full question will have a sub-question covering all the topics under a module.
- 9. The students will have to answer five full questions, selecting one full question from each module

Suggested Learning Resources:

Books

- 1. Introduction to Environmental Remote Sensing by Barrett E.C., Curtis, I.F., Chapman and Hall, New York, 1982
- 2. Remote Sensing principles and Interpretations- Sabins, F.F., (Ed) W.H. Freeman and Co., New York, 1986
- 3. Remote sensing and Image interpretation Thomas M. Lillesand and Ralph W. Kiefer, John Wiley and Sons Inc., New York, 1994.
- 4. Remote Sensing in Geology by Ravi P Gupta second edition.
- 5. Geoinformatics in Environmental Management by M Anji Reddy

Web links and Video Lectures (e-Resources):

- Remote Sensing Application by NRSC
- Indian Society of Remote Sensing Journal <u>https://www.isrs-india.org/</u>
- <u>https://isgindia.org/journal-of-geomatics/</u>

Skill Development Activities Suggested

- Field data collation for Geological features and water sample for test the concentrations of chemical elements.
- Collection air pollution data using instruments.

C01	Understanding concepts natural resources, Geological features, Land and soil resources mapping.	II, III
CO2	Acquiring the knowledge about Agro-ecosystems and Forest Resources Management using RS and GIS.	II, III
CO3	Understanding concepts of Water Resources Management using RS and GIS	III,IV
C04	Acquiring the concepts of Environment and Sustainable Development.	IV,V
C05	Assessing Environmental Pollution using Geoinformatics	V,VI

Mapping of COS and POs

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
CO1		x										
CO2				x								
CO3					x							
CO4				х								
CO5						x						

Semester – II (IPCC)

	SATELLITE DATA IMAGE PROCESSING AND ANALYSIS									
Course Code		22CGI22	CIE Marks	50						
Teaching Hour	s/Week (L:P:SDA)	3:2:0	SEE Marks	50						
Total Hours of	Pedagogy	40 hours Theory + 10-12 Lab slots	Total Marks	100						
Credits		04	Exam Hours	03.00						
Course object			_							
i) To	o understand the basic cor	ncepts of raster formats using statistica	al equation.							
ii) To	To acquire skills in image enhancement and transformation techniques									
iii) To	To impart skills for classification techniques raster data merging and advanced computer based									
al	gorithms.									
		MODULE-1								
Digital Data:	Introduction- Satellite d	ata acquisition –Storage and retrieva	l – Data Formats ·	– Compression –						
Digital Image	processing hardware and	software. Image Quality Assessment a	nd Statistical Evalu	uation.						
Teaching-	Structured lectures on th	ne fundamentals prepared from standa	rd books written b	y eminent						
Learning Process										
		MODULE-2								

Image Enhancement and Manipulation: Contrast Manipulation –Gray-Level Thresholding- Level Slicing Contrast Stretching – Spatial Convolution – Edge Enhancement – Spatial feature manipulation –Fourier Analysis. Spectral Rationing –Principal and Canonical Components– Vegetative Components, Vegetation indices – Intensity – Hue – Saturation – Colour Space Transformation, Texture transformation.

Teaching-	Encouraging students to give seminars, testing the outcome of teaching through conduct of
Learning	internal tests, assignments, discussion in the class. Computer based image enhancement and
Process	transformation techniques are learnt.

MODULE-3

Information Extraction from Images: Importance of ground truth data collection, instruments for reference data collection, Geo- tagging, training sample separability. Multispectral Classification – Supervised and Unsupervised Classification methods, Hybrid –Classification – Classification of Mixed Pixels. Post Classification Smoothing, Classification Accuracy Assessment.

Teaching-	Interactive/participative methods, through lectures, discussion, remedial instruction, study
Learning	assignment (reading books, periodicals, research papers, and exercises for practicing at home).
Process	Computer based image classification techniques are learnt.

MODULE-4 Data Merging and Change Detection: Multi-temporal Data merging, Multi-sensor image merging – Merging of image data with Ancillary data- Incorporating GIS Data into automated land cover classification, Binary change detection, and spectral change vector analysis.

Teaching-	Tutorial methods for the laggards, seminar methods for the groups, demonstration method where							
Learning	the faculty member / instructor himself performs a set of operations using the instruments and							
Process	Process software tools for data merging and change detection are learnt.							
MODULE 5								
Advanced Imaging Sensors and Analysis: Hyper spectral data analysis: Spectral angle mapper, Derivative								
spectroscopy,	Expert systems, Decision Tree classification, Machine learning, Artificial Neural Network concepts,							
genetic algori	thms, etc.							
Teaching-	Advancements taking place in imaging sensors and their data analysis will be collated through							
Learning	consulting the latest books, current periodicals, and latest research papers, invited lectures from							
Process	eminent scientists from ISRO, ESSO, ESRI, IBM, Infosysis, IITs, and other institutions.							

PRACTICAL COMPONENT OF IPCC (*May cover all / major modules*)

Sl.NO	Experiments
1	Generate the indices map using Model maker in ERDAS IMAGINE
2	Perform the Unsupervised Classification using ISODATA algorithm in ERDAS IMAGINE
3	Perform the supervised classification of given data using different algorithms. Calculate the accuracy assessment for classification satellite image.
4	Generate the NDVI map using ERDAS Imagine and draw the graph of different objects.
5	Using ERDAS IMAGINE generate the Principle Component Analysis
6	Filtering Techniques.
7	Change Detection of satellite images
8	Land use and Land cover map Preparation using ArcMap.

9	Unsupervised classification using Random Forest algorithm
10	Using Model maker calculate drought index using ERDAS imagine
11	Perform the supervised classification of given data using different algorithms. Calculate the accuracy assessment for classification satellite image.
12	Unsupervised classification using Random Forest algorithm

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% (50 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together

CIE for the theory component of IPCC

- 4. Two Tests each of 20 Marks
- 5. Two assignments each of 10 Marks/One Skill Development Activity of 20 marks
- 6. Total Marks of two tests and two assignments/one Skill Development Activity added will be CIE for 60 marks, marks scored will be proportionally scaled down to **30 marks**.

CIE for the practical component of IPCC

- On completion of every experiment/program in the laboratory, the students shall be evaluated and marks shall be awarded on the same day. The**15 marks** are for conducting the experiment and preparation of the laboratory record, the other **05 marks shall be for the test** conducted at the end of the semester.
- The CIE marks awarded in the case of the Practical component shall be based on the continuous evaluation of the laboratory report. Each experiment report can be evaluated for 10 marks. Marks of all experiments' write-ups are added and scaled down to 15 marks.
- The laboratory test at the end /after completion of all the experiments shall be conducted for 50 marks and scaled down to 05 marks.

Scaled-down marks of write-up evaluations and tests added will be CIE marks for the laboratory component of IPCC for **20 marks**.

SEE for IPCC

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (duration 03 hours)

- 5. The question paper will be set for 100 marks and marks scored will be scaled down proportionately to 50 marks.
- 6. The question paper will have ten questions. Each question is set for 20 marks.
- 7. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.

8. The students have to answer 5 full questions, selecting one full question from each module.

The theory portion of the IPCC shall be for both CIE and SEE, whereas the practical portion will have a CIE component only. Questions mentioned in the SEE paper shall include questions from the practical component).

- The minimum marks to be secured in CIE to appear for SEE shall be the 15 (50% of maximum marks-30) in the theory component and 10 (50% of maximum marks -20) in the practical component. The laboratory component of the IPCC shall be for CIE only. However, in SEE, the questions from the laboratory component shall be included. The maximum of 04/05 questions to be set from the practical component of IPCC, the total marks of all questions should not be more than the 20 marks.
- SEE will be conducted for 100 marks and students shall secure 40% of the maximum marks to qualify in the SEE. Marks secured will be scaled down to 50. (Student has to secure an aggregate of 50% of maximum marks of the course(CIE+SEE)

Suggested Learning Resources:

Books

- Introductory Digital Image Processing A Remote Sensing Perspective by John R. Jensen 4th edition 2014
- Remote Sensing and Image Interpretation by by Lillesand Kiefer Chipman 6th edition 2014

Web links and Video Lectures (e-Resources):

- Students are encouraged to visit SWAYAM web site where there are several Massive Open Online Courses (MOOC), http://swayam.gov.in
- Students are encouraged to take the benefits of SWAYAM PRABHA- the direct to home (DTH) 34 channels telecasting educational programmes on 24x7 basis using GSAT-15 satellite. The channels are up-linked from BISAG-N, Gandhinagar.
- https://1lib.in/book/5243197/3b23f7?dsource=recommend

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

- To learn skill on image processing techniques and classification algorithm.
- To develop skill on ML and AI programming
- To get knowledge about different indices using different software.

Course outcome (Course Skill Set)

At the end of the course the student will be able to :

Sl. No.	Description	Blooms Level
C01	To understand the concepts of data formats and hardware and software.	I,II
CO2	To Acquire skills on enhancement and manipulation of satellite images	II,III
CO3	To acquire skills on image classification statistical calculation.	III,IV
CO4	To understand the concepts of image fusion techniques and change of detection.	IV,V
CO5	To acquire skills on advance remote sensing and Artificial Intelligence technology	V,VI

Mapping of Cos and POs

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
CO1							х					
CO2	X											
CO3		x										
CO4		X				X						
CO5							х	х			х	

Semester- II (PEC)

	Web Applications in Geoinformatics		
Course Code	(Professional Elective 1) 22CGI231	CIE Marks	50
Teaching Hours/Week (L:P:SDA)	2:0:2	SEE Marks	50
Total Hours of Pedagogy	25 Hours of teaching +10-12 sessions	Total Marks	100
	of SDA		
Credits	03	Exam Hours	03.00

Course Learning objectives:

- i) To understand the basic concepts, computing map, their functionalities and applications in WebGIS.
- ii) To understanding the advanced concepts of spatial data analysis using python programming.
- iii) To acquire skills on Cloud based platform.

Module-1

Introduction to Web GIS: Definition, concept of Web GIS, History of web GIS, components of web GIS, internet, web GIS v/s Internet GIS, Fundamentals of computer networking – network environment – network communication models –protocols – TCP/IP. Applications of web GIS, users and stake holders of web GIS, advantages and limitations of web GIS, overview of Web GIS.

Client/server Computing: Client – server Concepts, client/server system partition– layered architecture – advantages and disadvantages of client server architecture. Distributed component framework – web mapping – static and interactive web mapping – open GIS web map server.

Distributed geographic information services: Principle – components – logic and data components.

Teaching-	Structured lectures prepared from standard books written by eminent authors through audio-
Learning Process	visual technologies, explain the basics of WebGIS, Client/Server and distributed GIS services.
	•

Module-2

Geographic Markup Language: Principles – characteristics – commercial web mapping programs - mobile GIS. Distributed GIS in data warehousing and data sharing.

Functions of Web GIS: Display of general information for the public, display of planning information, interactive display of spatial information sharing and distribution of spatial data as well as management of spatial data.

Design of User Graphic Interface User friendly interface, characteristics, menus and icons, common terms. Graphic Appearance - colours, sizes, fonts, scales and arrangement.

Teaching-	Encouraging students to give seminars, testing the outcome of teaching through conduct of	
Learning Process	b meetina tests, assignments, aiseassion in the class, explain and, fanction of webais and design	
Module-3		

Software. Proprietary and Open Source for developing server and client applications. Evaluation of different software - ArcIMS, Map Objects, Mapguide, Map Server, Geomedia web map, Openlayers, Geoserver etc.

Applications of WEB GIS: Participatory GIS -Web-based GIS For Collaborative Planning And Public Participation, Digital Democracy for planning, Local Environmental Decision-making, regional and local level planning. Community GIS, Intelligent transportation systems, planning and resource management. E-Governance.

Teaching-	Interactive/participative methods, through lectures, discussion, remedial instruction, study			
Learning	assignment (reading tutorials, periodicals, and exercises for practicing at home), explain WebGIS			
Process	Software with their applications.			
Module-4				

Python Scripting in Spatial data analysis: Graphs, Graphs algorithm, Networking programming, GML processing, GUI programming Database Access, Geoprocessing using python, python in GIS. Introduction to Leaflet API, Map box, cloud based and server less approaches.

Teaching-	Tutorial methods for the laggards, seminar methods for the groups, demonstration method where	
Learning	the faculty member / instructor himself performs a set of operations/libraries for in python	
Process	programming.	
Module-5		

Geo-data processing in Cloud computation platform: Google Earth Engine and Planetary Computing. Fundamentals of JavaScript programming, Working with Image Collections, Creating Mosaics and Composites, Working with Feature Collections, Map/Reduce Programming Concepts, Calculating Indices, Cloud Masking, Calculating Area and Statistics, Time-series Charts.

Teaching-	Demonstration method where the faculty member / instructor himself performs a set of
Learning	operationsfor Geo data processing tools and cloud computing platform.
Process	

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% (50 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- 11. Three Unit Tests each of 20 Marks
- **12.** Two assignments each of **20 Marks** or **one Skill Development Activity of 40 marks** to attain the COs and POs

The sum of three tests, two assignments/skill Development Activities, will be **scaled down to 50 marks CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.**

Semester End Examination:

- 6. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 7. The question paper will have ten full questions carrying equal marks.
- 8. Each full question is for 20 marks. There will be two full questions (with a maximum of four sub-questions) from each module.
- 9. Each full question will have a sub-question covering all the topics under a module.
- 10. The students will have to answer five full questions, selecting one full question from each module

Suggested Learning Resources:

Books

- 1. Internet GIS by Zhong-Ren Peng
- 2. Python Geospatial Analysis Cookbook by Michael Diener
- 3. Arcpy and ArcGIS by Jerry Davis second edition
- 4. Python Scripting for ArcGIS by Paul A. Zandbergen

Web links and Video Lectures (e-Resources):

- Web Tutorial in python programming
- https://github.com/
- <u>https://mapserver.org/</u>

Skill Development Activities Suggested

- Working on Cloud based platform.
- Publishing the maps in Web GIS.

Course outcome (Course Skill Set)

Sl. No.	Description	Blooms Level
C01	Understanding the WebGIS, Client/Server and Distributed GI servers	I,II
CO2	Acquiring knowledge about GML, Functions of Web GIS and GUI.	II,III
CO3	Acquiring knowledge about WebGIS software and application of webGIS.	III,IV
CO4	Acquiring the skills about spatial data analysis using python programming.	IV,V
CO5	Acquiring the skills for geo-data processing tools and assessing the cloud computing	V,VI
	platform for generates the maps.	

Mapping of Cos and POs

	P01	P02	PO3	P04	P05	P06	P07	P08	P09	P010	P011
C01	X										
CO2		Х									
CO3										X	
CO4							х				
CO5								X			

Semester- II (PEC)

Programming Skills in spatial data analytics					
	(Professional Elective 1)				
Course Code	22CGI232	CIE Marks	50		
Teaching Hours/Week (L:P:SDA)	2:0:2	SEE Marks	50		
	25 Hours of teaching +10-12 sessions	Total Marks	100		
	of SDA				
Credits	03	Exam Hours	03.00		

Course Learning objectives:

- i) To understand the basic installation of software and packages in python programming.
- ii) To acquiring skills of spatial data analysis using python programming.
- iii) To acquire skills to develop tools in QGIS using python programming.

Module-1

Geospatial Python Environment: Installing Pypro, Numpy, Shapely, matplotlib, Descartes, pyshp, geojson, pands, Scipy, PySAL, Ipythom, GDAL, OGR, geoDjang, and PostgreSQL with PostGIS.

Projection using python: Discovering projection(s) of a Shapefile or GeoJSON dataset, Listing projection(s) from a WMS server, Creating a projection definition for a Shapefile if it does not exist, Batch setting the projection definition of a folder full of Shapefiles, Reprojecting a Shapefile from one projection to another.

Teaching-	Structured lectures prepared from standard books written by eminent authors through audio-
Learning	visual technologies, explain the installation different software and packages in python environment
Process	and project system in programming.

Module-2

Spatial Data Formats: Converting a Shapefile to a PostGIS table using ogr2ogr, Batch importing a folder of Shapefiles into PostGIS using ogr2og, Batch exporting a list of tables from PostGIS to Shapefiles, Converting an Open Street Map (OSM) XML to a Shapefile, Converting a Shapefile (vector) to a GeoTiff (raster), Converting a raster (GeoTiff) to a vector (Shapefile) using GDAL.

PostGIS: PostGIS ST_Buffer analysis query and exporting it to GeoJSON, Splitting Line Strings at intersections using ST_Node, Executing a spatial join and assigning point attributes to a polygon.

Teaching-	Encouraging students to give seminars, testing the outcome of teaching through conduct of
Learning	internal tests, assignments, discussion in the class, explain Spatial data formats and PostGIS using
Process	GeoJSON.

Module-3

Vector Analysis using python: Clipping Line Strings to an area of interest, Splitting polygons with lines, Finding the location of a point on a line using linear referencing, Snapping a point to the nearest line, Calculating 3D ground distance and total elevation gain.

Overlay Analysis: Punching holes in polygons with a symmetric difference operation, Union polygons without merging, Union polygons with merging (dissolving), Performing an identity function (difference + intersection).

Teaching-	Interactive/participative methods, through lectures, discussion, remedial instruction, study		
Learning	assignment (reading tutorials, periodicals, and exercises for practicing at home), explain vector		
Process	analysis and overlay analysis using Python programming.		
	Module-4		
Raster Analy	sis using python: Loading a DEM USGS ACSII CDED into PostGIS, Creating an elevation profile,		
Creating a hill	shade raster from your DEM with ogr, Generating slope and aspect images from your DEM, Merging		
rasters to gen	erate a color relief map.		
Visualization	of Spatial Data: Generating a leaflet web map with Folium, Visualizing DEM data with Three.js,		
Draping an or	thophoto over a DEM.		
Teaching-	Demonstration method where the faculty member / instructor himself performs a set of operations		
Learning	to raster analysis and visualization of spatial data using python programming.		
Process			
	Module-5		
QGIS using P	ython: Automating QGIS, Querying Vector data, Editing Vector Data, Using Raster data, Creating		
dynamic maps	s, Composing Static Maps, interacting with the user, QGIS work flows.		
Teaching-	Demonstration method where the faculty member / instructor himself performs a set of operations		
Learning	to develop the tools in QGIS using Python programming.		
Process			

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% (50 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- 13. Three Unit Tests each of 20 Marks
- **14.** Two assignments each of **20 Marks** or **one Skill Development Activity of 40 marks** to attain the COs and POs

The sum of three tests, two assignments/skill Development Activities, will be **scaled down to 50 marks CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.**

Semester End Examination:

- 11. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 12. The question paper will have ten full questions carrying equal marks.
- 13. Each full question is for 20 marks. There will be two full questions (with a maximum of four sub-questions) from each module.
- 14. Each full question will have a sub-question covering all the topics under a module.
- 15. The students will have to answer five full questions, selecting one full question from each module

Suggested Learning Resources:

Books

- 1. Python Geospatial Analysis Cookbook by Michael Diener.
- 2. QGIS python Programming Cookbook by Joel Lawhead.
- 3. Python Scripting for ArcGIS by Paul A. Zandbergen

Web links and Video Lectures (e-Resources):

- Web Tutorial in python programming
- <u>https://github.com/</u>

Skill Development Activities Suggested

- Developing the new tools in QGIS using Python programming
- Generating spatial data maps using python programming

Course outcome (Course Skill Set)

Sl. No.				Ľ	Descripti	ion					Blooms L	
CO1	Understand	ling the i	nstallatio	n softwa	are and p	ackages	in pytho	n enviro	nment.		I,II	
CO2	Understand	Understanding the spatial data formats and PostGIS using GeoJSON.										
CO3	Acquiring t	Acquiring the skills for vector and overlay analysis using python programming.										
CO4	Acquire the	e skills to	process t	he raste	r data an	ıd visuali	zation o	f maps u	sing pytl	10n.	IV,V	
CO4 CO5	Acquire the Acquire the		•						0.0	ion.	IV,V V,VI	
C05	•	e skills to	•						0.0	10n.		

CO2 x								
CO3 x .	CO1	х						
CO3 x x CO4 x x CO5 x x	CO2				Х			
CO4 x x x CO5 x x x x	CO3					x		
CO5 x .	CO4				Х			
	CO5					Х		

Semester- II (PEC)

Semester- II (formatics in Public Health Managem (Professional Elective 1)	ent	
Course Code		22CGI233	CIE Marks	50
	s/Week (L:P:SDA)	2:0:2	SEE Marks	50
Total Hours of		25 Hours of teaching +10-12 sessions of SDA	Total Marks	100
Credits		03	Exam Hours	03.00
• On con Public	: Health Events, epidemio	ubject the student would be able to and logical data and others and use it for m ith Geospatial Technology.		-
		Module-1		
Frequency, Ro	ole of Remote Sensing in istical Methods for Spatia	Public Health: Basics of Epidemion Public Health, Geographic Informat I Data in Public Health Research, Globa	ion Systems (GIS) in Public Health
Teaching- Learning Process		pared from standard books written by e lain the basics of public health manager		-
Process		Module-2		
Constitut Datah	f D li - U leh		Dataharan ƙaw Dal	
Public Health		d Cartographic Visualization: Spatial c Data, Database Integration, Public H xploration.		
Teaching-	Encouraging student	s to give seminars, testing the outcome	of teaching throug	gh conduct of
Learning	internal tests, assign	ments, discussion in the class, explain S	patial database cr	eation for public
Process	-	and visualization maps.	F • • • • • • • • • • • • • •	r r
		Module-3		
Spatial Analys Studies on Sp	sis, Temporal Data Analy	nalysis of Public Health Events: Dat rsis and GIS, Spatio-Temporal (ST) M on of public health events. Benefits o	lethods, Spatial E	Epidemiology, Case
Teaching-	Interactive/participativ	e methods, through lectures, discussion	n, remedial instruc	tion, study
Learning		orials, periodicals, and exercises for pra		
Process		ooral analysis of public health events.	0 ,,	1 I
		Module-4		
Conditions an Ecosystem Mc	d Disease Interaction, E odifications, Loss of Pred	sease Pattern: Exploring the Ecology Invironmental Impacts of Controlling ators and Host Species Imbalance, La of Reservoir or Vector Populations., A	g Disease Pattern and Use and Envi	and Distribution,
Teaching- Learning Process		e laggards, seminar methods for the gro structor himself performs a set of opera		
		Module-5		
Observation in Studies: Asses	Disease Risk Analysis an	Itial Technology: Components of Early d Early Warning System, Spatial Scale o Iniasis Risk in Muzaffarpur District (Bil Ind Policy,	of Early Warning S	ystem, Case
Teaching- Learning Process		where the faculty member / instructor h nt with Geospatial technology.	iimself performs a	set of operations

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% (50 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- 15. Three Unit Tests each of 20 Marks
- **16.** Two assignments each of **20 Marks**or**oneSkill Development Activity of 40 marks** to attain the COs and POs

The sum of three tests, two assignments/skill Development Activities, will be scaled down to 50 marks

CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- 16. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 17. The question paper will have ten full questions carrying equal marks.
- 18. Each full question is for 20 marks. There will be two full questions (with a maximum of four sub-questions) from each module.
- 19. Each full question will have a sub-question covering all the topics under a module.
- 20. The students will have to answer five full questions, selecting one full question from each module

Suggested Learning Resources:

Books

- 1. Geospatial Analysis of Public Health, by Gouri Sankar Bhunia and Pravat Kumar Shit, © Springer Nature Switzerland AG 2019.
- 2. GIS and Public Health by Ellen K Cromley and Sara L McLafferty, Guilford publications 2nd edition 2012.
- 3. Applied Spatial Analysis of Public Health Data by Lance A. Waller, Carol A. Gotway 1st edition 2004 Wiley-Interscience

Web links and Video Lectures (e-Resources):

• <u>https://1lib.in/book/499542/d6f577</u>

Skill Development Activities Suggested

• Collecting locations of disease affected areas and mapping the same.

Course outcome (Course Skill Set)

At the end of the course the student will be able to :

Description	Blooms Level
Understanding the concepts of public health issues,	I, II
To create Spatial Database for Public Health and Cartographic Visualization	II,III
Developing Spatio-temporal Analysis of Public Health Events	III,IV
Understanding the Ecology and Associated vector borne Disease Patterns	V
Developing Disease Risk Assessment models.	VI
	Understanding the concepts of public health issues, To create Spatial Database for Public Health and Cartographic Visualization Developing Spatio-temporal Analysis of Public Health Events Understanding the Ecology and Associated vector borne Disease Patterns

Mapping of COS and POs

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011
CO1		х									
CO2						x					
CO3								Х			
CO4				X							
CO5									х		

	Advanced	Earth Observation Systems and App (Professional Elective 1)	lications	
Course Code		22CGI234	CIE Marks	50
	s/Week (L:P:SDA)	2:0:2	SEE Marks	50
Total Hours of		25 Hours of teaching +10-12 sessions of SDA	Total Marks	100
Credits		03	Exam Hours	03.00
Course Learni	ing objectives:			
i. To	o understand the physical	basis of advanced Earth observations.		
	-	analysis of Hyper spectral and Hyper s	-	
iii. To	o use the advance EO syst	ems in understanding Earth system fur	ictioning and clima	ate change.
		Module-1		
Platforms, Sp Photographic (Sensors, LiDAR	aceborne Platforms, N Cameras, Digital Aerial Ca & The Ground Segment ,E		Orbits, Sensors, Electro-Optical Sca	Optical Sensors, nners, Microwave
Teaching- Learning	Structured lectures prep visual technologies, exp	pared from standard books written by lain the basics of EOS.	eminent authors th	1rough audio-
Process		Module-2		
Testa en ati a e al	Fasth Observation Cost	ems: The Earth Observing System (EO	C)	
(EoS-Am), Aqu	ua (EoS Pm), Earth Obs ogramme. Intergovernme Encouraging student	rre (SPOT), Pleiades Systems, The Ear serving-1 (EO-1) Mission, Rapid eye, ntal Agencies and Partnerships. s to give seminars, testing the outcome ments, discussion in the class, explain I	Sentinel series of of teaching throug	of satellites under
		Module-3		
OCM series, Me High Spatial Re Worldview Mis	gha-Tropiques, RISAT se esolution Remote Sensin sions, Hyperspectral reso	Data Systems: IRS IA/IB, IRS IC/ID, Re ries, HySiS, SCATSAT, SARAL, EOS-04, I g Systems, Early bird & Quick bir olution sensors of India and world-wide	NSAT-series havin rd, IKONOS, Orbvi e systems.	g EO payloads. ew-3, Geoeye-1,
Teaching-		ive methods, through lectures, discussi		-
Learning		utorials, periodicals, and exercises for p	bracticing at nome	j, explain
Process	Hyperspectral and Hy	per resolution Data Systems. Module-4		
Resources Sate	ellite (JERS-1), Advanced Satellite (RISAT) Mission	bete Sensing Satellite (ERS-1 and -2, E Land Observation Satellite (Alos-1), C ns, Soil Moisture And Ocean Salinity M	anada's RADARSA	T Missions, India's
Teaching- Learning Process		e laggards, seminar methods for the gr astructor himself performs a set of oper ors.		
		Module-5		
land survey ap	plications, Disaster mana	es management, Forest and environm agement, LULC and climate change stu Water resources conservation and deve	dies, Meteorologic	al and
Teaching- Learning Process	Demonstration method application of EOSs.	where the faculty member / instructor	himself performs t	o learn the

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% (50 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- 17. Three Unit Tests each of 20 Marks
- **18.** Two assignments each of **20 Marks**or**oneSkill Development Activity of 40 marks** to attain the COs and POs

The sum of three tests, two assignments/skill Development Activities, will be scaled down to 50 marks

CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- 4. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 5. The question paper will have ten full questions carrying equal marks.
- 6. Each full question is for 20 marks. There will be two full questions (with a maximum of four sub-questions) from each module.
- 7. Each full question will have a sub-question covering all the topics under a module.
- 8. The students will have to answer five full questions, selecting one full question from each module

Suggested Learning Resources:

Books

- 9. Fawaz T Ulaby, Richard K Moore and Adrian K Fung, Microwave Remote Sensing active and passive, Vol. 1, 2 and 3 Addison Wesly Publication company 1981, 1982, and 1986.
- 10. Remote sensing and Image Interpretation by Thomas M Lillesand and Ralph W. Keifer fourth Edition, 2002, 2003, Joh
- 11. Remote Sensing Principles and Interpretation by Floyd F Sabins, 1997, W H Freeman And Company
- 12. Hyperspectral Imaging Remote Sensing by Dimitris Manolakis, Ronald Lockwood, Thomas Cooledy, 2016

Web links and Video Lectures (e-Resources):

• <u>https://1lib.in/book/499542/d6f577</u>

Skill Development Activities Suggested

To get knowledge about interpretation of Hyper spectral data and Microwave data.

Course outcome (Course Skill Set)

Sl. No.	Description	Blooms Level
C01	Understanding the advances in Remote Sensing (RS) in terms of sensors specifications	II
CO2	Acquire information about development of EOS in the developed countries.	II, III
CO3	Get familiarised with advanced EO data formats and data types and products.	III,IV
CO4	Develop interpretation and analysis skills for information extraction.	IV,V
CO5	Develop innovative solutions through spatial data analytics (raster data)	V,VI

Mapping of COS and POs

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011
C01		х									
CO2							x				
CO3								Х			
CO4						x					
CO5							x				

Semester- II (PEC)

	Art	ificial Intelligence in Geoinformatics (Professional Elective 2)	5	
Course Code		22CGI241	CIE Marks	50
	s/Week (L:P:SDA)	2:0:2	SEE Marks	50
Total Hours of		25 Hours of teaching +10-12 sessions of SDA	Total Marks	100
Credits		03	Exam Hours	03.00
i. To u ii. To ac	cquiring advance technol	f computational intelligence algorithms ogies like ANN, ML, Deep learning. develop genetic algorithms and program		ŗ.
		Module-1 vledge Representation, Expert System		
learning -Naïve	e Bayes Classifier Algorith t Neighbours, Unsupervis Structured lectures on t	essing, Major Parts of AI. Introductio nm, SVM, Linear, Logistic regression, De ed learning- K Means Clustering, Reinfo he fundamentals prepared from standa visual technologies, explain introductio	ecision Tree, Rando orcement learning rd books written b	om (ANN). y eminent
		Module-2		
Convolutional linear regresso a Convolutiona	Neural Networks, Archit or, Building an image clas Il Neural Network,	e. Deep Learning with Convolution tecture of CNNs, Types of layers in a sifier using a single-layer neural netwo	a CNN, Building a rk, Building an im:	perceptron-based age classifier using
Teaching- Learning Process		is to give seminars, testing the outcome ments, discussion in the class and give l perprint		
	with deep learning to	Module-3		
Architecture of Reinforcemen reinforcement agent, Self-Org	of RNNs, A language m nt Learning: Reinforce learning, Building block anizing Maps in ANN.	her Deep Learning Models: The ba nodeling use case, Training an RN, ement learning versus supervised s of reinforcement learning, Creating a	Creating Intellig learning, Real-wo an environment, B	ent Agents with orld examples of uilding a learning
Teaching-	,, ,	e methods, through lectures, discussion		
Learning		oks, periodicals, research papers, exerc	ises for practicing	at home), explain
Process	RNN and other deep lea			
		Module-4		
spaces, Object	tracking using backgrou cical flow-based tracking	age recognition, OpenCV, Frame differ and subtraction, Building an interactiv , Face detection and tracking, Eye de	e object tracker u	sing the CAMShift

Teaching- Learning Process	Futorial methods for the laggards, seminar methods for the groups., demonstration method where the faculty member / instructor himself performs a set of operations, give the lectures image recognition and NLP.								
Module-5									
Fundamental evolution, Sol	orithms and Genetic Programming: Understanding evolutionary and genetic algorithms, concepts in genetic algorithms, Generating a bit pattern with predefined parameters, Visualizing the lying the symbol regression problem, Building an intelligent robot controller, Genetic programming tificial Intelligence on the Cloud: Amazon Web Services (AWS), Microsoft Azure, Google Cloud								
Teaching- Learning Process	Demonstration method where the faculty member / instructor himself performs to learn the genetic algorithms and programming and AI on the cloud.								

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% (50 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

19. Three Unit Tests each of 20 Marks

20. Two assignments each of **20 Marks**or**oneSkill Development Activity of 40 marks** to attain the COs and POs

The sum of three tests, two assignments/skill Development Activities, will be scaled down to 50 marks

CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50. The question paper will have ten full questions carrying equal marks.

Each full question is for 20 marks. There will be two full questions (with a maximum of four sub-questions) from each module.

Each full question will have a sub-question covering all the topics under a module.

The students will have to answer five full questions, selecting one full question from each module

Suggested Learning Resources:

Books

- Artificial Intelligence, Machine Learning, and Deep Learning by Oswald Campesato 2020
- Artificial Intelligence with Python 2nd edition by Alberto Artasanchez Prateek Joshi packt publications 2020.
- Neural networks and Learning Machines 3rd edition by Simon S Haykin pearson publications 2009.
- Machine learning with R 2nd edition by Brett Lantz packt publications 2015.
- Mastering machine learning with R 2nd edition packt publications 2017

Web links and Video Lectures (e-Resources):

- https://1lib.in/
- Web Tutorials
- GitHub

Skill Development Activities Suggested

- To develop the skill on Machine learning techniques in RS and GIS
- To develop the skills on ANN techniques in RS and GIs.

Course outcome (Course Skill Set)

At the end of the course the student will be able to :

Sl. No.

C01	Understanding the concepts of AI and Machine Learning with algorithms.	I,II
CO2	Acquire advance technology ANN with algorithms and programming skills.	II,III
CO3	Acquire advance technology RNN and Reinforcement and programming skills.	III,IV
CO4	Develop skills on image recognition and NLP.	IV,V
CO5	Create and Develop new algorithms and cloud based processing in AI.	V,VI

Mapping of COS and POs

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
C01	Х							х				
CO2						Х		Х				
CO3							Х				х	
CO4						Х		х				
CO5		X				X	Х					X

Semester- II (PEC)

Programming in .Net, JavaScript and HTML, Cloud Computing (Professional Elective 2)							
Course Code	22CGI242	CIE Marks	50				
Teaching Hours/Week (L:P:SDA)	SEE Marks	50					
Total Hours of Pedagogy	25 Hours of teaching +10-12 sessions of SDA	Total Marks	100				
Credits	03	Exam Hours	03.00				

Course Learning objectives:

i. To understand the concepts of Java and HTML programming.

- ii. To acquiring advance programming skill on JavaScript working with objects.
- iii. To acquire advanced skills to develop Angular JS Modules and Forms.

Module-1

Introduction to Java: Classes: Classes in Java; Declaring a class; Class name; Super classes; Constructors; Creating instances of class; Inner classes. Inheritance: Simple, multiple, and multilevel inheritance; Overriding, overloading. Exception handling: Exception handling in Java.

Teaching-	Structured lectures on the fundamentals prepared from standard books written by eminent
Learning	authors through audio-visual technologies, explain concepts of Java programming.
Process	
	Module-2

Introduction to HTML

HTML Basics, Elements, Attributes, Styles, Forms, Form Elements, Input Element Types, Input Attributes, File Paths, Script tag, HTML &XHTML.

Introduction to CSS

CSS Introduction, Syntax, Selectors, Styling, Pseudo class, Pseudo Elements, CSS Tables, CSS Box Models, CSS Opacity, CSS Navigation Bar, Dropdowns.

Teaching-	Encouraging students to give seminars, testing the outcome of teaching through conduct of			
Learning	internal tests, assignments, discussion in the class and give lectures on the HTML and CSS			
Process	programming.			
Module-3				

Introduction to JavaScript: JavaScript Statements, Keywords, Functions, JavaScript Programs, Operators, Functions Function Parameters, Function Return Types, Data Types, Primitive Types

Working with Objects Object Oriented Programming, Object Creation, Adding Methods of Objects, JavaScript Loops & Iteration, Adding Properties of Objects, JavaScript Conditional Statements, Enumerating Properties, Callbacks, JSON

Angular JS Basics: What is Angular JS? Why Angular JS? Why MVC matters, MVC-The Angular JS way, Features of Angular JS, Model-View-Controller, My First Angular JS app

Teaching-	Interactive/participative methods, through lectures, discussion, remedial instruction, study
Learning	assignment (reading books, periodicals, research papers, and exercises for practicing at home). To
Process	learn concepts of JavaScript with objects and Angular JS basics.

Module-4

Angular Expressions: All about Angular Expressions, How to use expressions, Angular vs JavaScript **Filters:** Built-In Filters, Using Angular JS Filters, Creating Custom Filters

Directives: Introduction to Directives, Directive Lifecycle, Binding controls to data, Matching directives, Using Angular JS built-in directives, Creating a custom directive

Teaching-	Tutorial methods for the laggards, seminar methods for the groups., demonstration method where
Learning	the faculty member / instructor himself performs a set of operations, give the lectures on Angular
Process	expressions, filters and dircetives.

Module-5

Controllers: Role of a Controller, Controllers & Modules, Attaching Properties and functions to scope, Nested Controllers, Using Filters in Controllers, Controllers in External Files

Angular JS Modules: Introduction to Angular JS Modules, Bootstrapping Angular JS

Angular JS Forms: Working with Angular Forms, Model Binding, Forms Events, Updating Models with a Twist, Form Controller, Validating Angular Forms, \$error object

Scope:

What is scope, Scope Lifecycle, Scope Inheritance, Scope & Controllers, Root scope, Scope Broadcasting, Two-way data binding, Scope Inheritance Scope & Directives, \$apply and \$watch, Scope Events

Teaching-	Demonstration method where the faculty member / instructor himself performs to set operations of
Learning	controllers, angular JS Modules, JS Forms and scope.
Process	

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% (50 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- 21. Three Unit Tests each of 20 Marks
- **22.** Two assignments each of **20 Marks**or**oneSkill Development Activity of 40 marks** to attain the COs and POs

The sum of three tests, two assignments/skill Development Activities, will be scaled down to 50 marks CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50. The question paper will have ten full questions carrying equal marks.

ii. Each full question is for 20 marks. There will be two full questions (with a maximum of four sub-questions) from each module.

Each full question will have a sub-question covering all the topics under a module.

The students will have to answer five full questions, selecting one full question from each module

Suggested Learning Resources:

Books

- JavaScript: The Definitive Guide David Flanagan, 6th Edition
- The Complete Reference Java Seventh Edition –Herbert Schildt
- Programming Language Pragmatics Michael L. Scott, 2nd Edition, Elsevier, 2006
- Operating System Concepts Avil Sillberschatz, Peter Baer Galvin, Greg Gayne
- Programming Languages Concepts and Constructs Ravi Sethi, 2nd Edition, Pearson Education, 1996.

Web links and Video Lectures (e-Resources):

- Tutorial on Java and JavaScript and HTML
- <u>https://github.com/</u>
- https://llib.in/book/499542/d6f577

Skill Development Activities Suggested

• To learn the skills on web development using JavaScript and HTML programming.

Course outcome (Course Skill Set)

Sl. No.	Description	Blooms Level
C01	Understanding the concepts of Java programming skills.	I,II
CO2 CO3 CO4 CO5	Acquire programming skills on HTML and CSS. Get familiarised the JavaScript working with objects and Angular JS Modules. Develop skills on Angular Expression, Filters and Directives. Develop skills on Controllers, Angular JS Modules, Angular JS Forms and scope.	II, III III, IV IV,V V,VI

Mapping of COS and POs

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
CO1	X											
CO2	X							х				
CO3							х					
CO4								х				
CO5						х						

Semester- II (PEC)

	Location Base	ed Intelligence and Supply Chain Ma (Professional Elective 2)	nagement.		
Course Code		22CGI243	CIE Marks	50	
	s/Week (L:P:SDA)	2:0:2	SEE Marks	50	
Total Hours of Pedagogy25 Hours of teaching +10-12 sessionsTotal Marks100of SDA					
Credits		03	Exam Hours	03.00	
i. To ii. To	o apply the location scie	s of location science and services ence for collecting business intellige lels for supply chain management.	ence.		
		Module-1			
	g Systems, GPS, GALILEO, Structured lectures on th	nce (LBI) and Location Based Services GLONASS, BEIDOU, NavIC, GAGAN, OM ne fundamentals prepared from standa risual technologies, Explain concepts of	IISTAR, Japanese S rd books written b	BAS, etc.	
		Module-2			
	ater / Air Quality monitor Encouraging student	s to give seminars, testing the outcome ments, discussion in the class. Explain a	of teaching throug	gh conduct of	
		Module-3			
Middleware – Source (.NET /	Enterprise Service Bus, M ' Java); UI Design / Style; Hybrid), Data Interope eo JSON.	nitecture, Database (SQL and No SQL d Mobile Application, Application Deve AJAX, Modular / Object Oriented Fra rability: GML, XML, City GML, OGC Co	lopment Framew mework, Mobile P ompliance - WMS,	ork: COTS / Open latforms (Android, WFS, WCS, WFS-T,	
Learning					
Process					
		Module-4			
Location Base standards, data Network Archi	d Services, Navigation S a collection, Data Transmi itecture, Functional entiti rd Sourcing, Data mining. Tutorial methods for the	Based Services: Concept of Location System, Spatial Database, Middlewar ission in Mobile communication system es, Procedures, Privacy options in LBS e laggards, seminar methods for the gro structor himself performs a set of oper and LBS.	e for LBS, Interop ns, Architecture an S, Location Intellig pups., demonstratio	perability through d Protocol for LBS, ence Social Media on method where	

	Module-5
Supply Chair	Management: Meaning of supply chain, the components of management supply chain, a few success
stories of usin	ng LBS in supply chain management.
Teaching-	Demonstration method where the faculty member / instructor himself performs a set of operations,
Learning	about supply chain management using LBS.
Process	

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% (50 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- 23. Three Unit Tests each of 20 Marks
- **24.** Two assignments each of **20 Marks** or **one Skill Development Activity of 40 marks** to attain the COs and POs

The sum of three tests, two assignments/skill Development Activities, will be scaled down to 50 marks CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50. The question paper will have ten full questions carrying equal marks.

- i. Each full question is for 20 marks. There will be two full questions (with a maximum of four sub-questions) from each module.
- . Each full question will have a sub-question covering all the topics under a module.

The students will have to answer five full questions, selecting one full question from each module

Suggested Learning Resources:

Books

- Location Based Services Handbook Application, Technologies and security by Syed A Ahson and Mohammad Ilyas 1st edition 2010
- Location-Based Services and Geo-Information Engineering (Mastering GIS: Technol, Applications & Mgmnt) by Allan Brimicombe, Chao Li 1st edition 2009
- Sustainable Logistics and Supply Chain Management: Principles and Practices for Sustainable Operations and Management by David B. Grant, Chee Yew Wong, Alexander Trautrims 2nd edition 2017

Web links and Video Lectures (e-Resources):

- https://1lib.in/book/499542/d6f577
- On line courses on LBS and Supply chain Management.

Skill Development Activities Suggested

- Learn the Location Based services and information.
- Learn the supply chain models

Course outcome (Course Skill Set)

Sl. No.	Description	Blooms Level
C01	Understand the basics of LBS and LBI.	I,II
CO2	Learn the concepts of communication systems used in LBI.	II,III
CO3	Apply the knowledge about global and Indian navigation systems.	III
CO4	Create database and Analyse the location information.	V

C05	Produce different models for network operation and generate an optimum supply	
	chain.	

Mapping of COS and POS

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
CO1		X										
CO2	X											
CO3		Х										
CO4					x	х						
CO5											х	

Semester- II (PEC)

	Unmanı	ned Aerial System (UAS) and Applica (Professional Elective 2)	tions				
Course Code		22CGI244	CIE Marks	50			
Teaching Hour	s/Week (L:P:SDA)	2:0:2	SEE Marks	50			
Total Hours of	Pedagogy	25 Hours of teaching +10-12 sessions of SDA	Total Marks	100			
Credits		03	Exam Hours	03.00			
ii. To	impart basics of UAS, ru	les regulating their operations. Ita acquisition, processing and analysis various sectors.					
		Module-1					
system specific		AVs, classification of UAV platform, adv ying drones and DGCA licensing policy, teristics of smart UAV.					
Teaching- Learning Process	authors through audio-v	he fundamentals prepared from standa risual technologies, Explain the classific rledge on flying regulations and flight p	cation of UAV platfo	•			
	-	Module-2	-				
acquisition, Co GPS and UAV s	nsideration for remote se surveying and its accurate	of drone survey, large scale project ensing payloads, main hardware comp cy, Techniques of controlling errors, C at vs. manual and hybrid flight profiles.	onents, compariso	n on Total station,			
Teaching- Learning Process	internal tests, assignments, discussion in the class. Acquire knowledge on UAV survey, error						
		Module-3					

Image processing and Photogrammetry: UAV-based image processing, influencing factors of imaging, Image alignment-Aerial Triangulation, Block adjustment, structure from motion (sfm) photogrammetry, post processing software, point cloud evaluation, drone-based LiDAR technology, DEM, DSM, Contouring; Cut, Fill and Volumetric measurement calculation; orthophoto generation.

Teaching-	Interactive/participative methods, through lectures, discussion, remedial instruction, study
Learning	assignment (reading books, periodicals, research papers, and exercises for practicing at home).
Process	Understand the stages of image data processing, evaluation of point clouds, measurement of
	volume from 3-D.

Module-4

Modeling and analysis of UAV data: Concept of modeling, tools in UAV modeling, evaluation of output, Understanding RTK, PPK and GCPs, Overview of popular data processing software platforms and functions. Image interpretations and analysis.

Teaching-	Tutorial methods for the laggards, seminar methods for the groups., demonstration method where
Learning	the faculty member / instructor himself performs a set of operations, Acquire knowledge on the
Process	concept of modeling, usage of popular software, image interpretation.
	Module-5

Applications of UAV data: Application of drone for Surveying, Mapping, Construction, Agricultural, Engineering Land Survey and Architecture, crop insurance, disaster management, etc.

Teaching-
LearningDemonstration method where the faculty member / instructor himself performs a set of operations,
Apply the technology in various fields such as Agriculture, Engineering, Disaster Management, etc.ProcessImage: Comparison of the technology in various fields such as Agriculture, Engineering, Disaster Management, etc.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% (50 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- **25.** Three Unit Tests each of **20 Marks**
- **26.** Two assignments each of **20 Marks** or **one Skill Development Activity of 40 marks** to attain the COs and POs

The sum of three tests, two assignments/skill Development Activities, will be **scaled down to 50 marks**

CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- . The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- ii. The question paper will have ten full questions carrying equal marks.
- iii. Each full question is for 20 marks. There will be two full questions (with a maximum of four sub-questions) from each module.
- Each full question will have a sub-question covering all the topics under a module. The students will have to answer five full questions, selecting one full question from each module

Suggested Learning Resources:

Books.

- Theory, design, and applications of unmanned aerial vehicles by A. R. Jha Ph.D CRC Press / Taylor & Francis Group 2016.
- UAV or Drones for Remote Sensing Applications, Volume 1 by Felipe Gonzalez Toro, Antonios Tsourdos volume1 2018
- Unmanned Aerial Vehicle: Applications in Agriculture and Environment by Ram Avtar, Teiji Watanabe Springer 2019
- Drone Technology in Architecture, Engineering, and Construction: A Strategic Guide to Unmanned Aerial Vehicle Operation and Implementation by Daniel Tal, Jon Altschuld Wiley 2021

Web links and Video Lectures (e-Resources):

• https://1lib.in/book/11728318/96c900?dsource=recommend

Mapping of COS and POS

independing of co												
	P01	P02	PO3	P04	P05	P06	P07	P08	P09	P010	P011	P012
CO1	x							х				
CO2						х	х					
CO3							Х					
CO4									х		х	
CO5											X	x

Skill Development Activities Suggested

- i. To develop the UAS system and fly in the field.
- ii. To analyse the drone images in different software.

Course outcome (Course Skill Set)

Sl. No.	Description	Blooms Level
C01	Understand UAV technology in image capturing. Illustrate flight planning within flying regulations.	I, II
C02	Develop a plan for large scale survey integrated with Total station and GPS, hardware components and compare different flight profiles.	II,III
CO3	Image processing and Block adjustment. Analyse the products such as DSM, Orthophoto, etc.	III,IV
CO4	To develop different types of models compare RTK, PPK and GCP in model frames, evaluate different software and image interpretation.	IV,V
C05	Design UAV application in different fields and show it as an essential GIS tool.	V,VI

Semester -II (PCCL)

	ter - II (PCCL)	Geoinformatics Laboratory-	II				
Course		22CGIL26	CIE Marks	50			
	ng Hours/Week (L:T:P: S)	1:0:2:0	SEE Marks	50			
Credits		02	Exam Hours	03.00			
i) ii)	 objectives: Understand how to use a wide r resource management and hand Understand how to use cloud ba Raster and vector based solution 	ds programming skills. ased programming skills for ras	-	nt to natural			
SI.NO		Experiments					
1	Delineation of Lithological/geon	i	prest types and area estima	tion			
2	LU/LC Map Preparation, Delinea	tion of Watershed					
3	Make the different indices using	Model Maker using ERDAS Ima	gine.				
4	Semi Automation algorithm usin	ng QGIS.					
5	Practical using Google Earth Engine						
6	Image classification using R software						
7	Raster data processing using py	hon					
8	Practical using Google Earth Eng	ine					
	De	emonstration Experiments (F	or CIE) if any				
9	Practical using Google Earth Eng	ine					
10	Raster data processing using pyt	hon					
11	practical on Map server and web) server					
12	Vector analysis using python pro	ogramming					
	e outcomes (Course Skill Set): and of the course the student will l Students will be equipped with independently or as a team effo	modern tools, software of GIS a	nd be confident to impleme	ent a GIS projec			

• Students will be able to write code for programs.

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course. The student has to secure not less than 40% of maximum marks in the semester-end examination (SEE). In total of CIE and SEE student has to secure 50% maximum marks of the course.

Continuous Internal Evaluation (CIE):

CIE marks for the practical course is **50 Marks**.

The split-up of CIE marks for record/ journal and test are in the ratio 60:40.

- Each experiment to be evaluated for conduction with observation sheet and record write-up. Rubrics for the evaluation of the journal/write-up for hardware/software experiments designed by the faculty who is handling the laboratory session and is made known to students at the beginning of the practical session.
- Record should contain all the specified experiments in the syllabus and each experiment write-up will be evaluated for 10 marks.
- Total marks scored by the students are scaled downed to 30 marks (60% of maximum marks).
- Weightage to be given for neatness and submission of record/write-up on time.
- Department shall conduct 02 tests for 100 marks, the first test shall be conducted after the 8th week of the semester and the second test shall be conducted after the 14th week of the semester.
- In each test, test write-up, conduction of experiment, acceptable result, and procedural knowledge will carry a weightage of 60% and the rest 40% for viva-voce.
- The suitable rubrics can be designed to evaluate each student's performance and learning ability.
- The average of 02 tests is scaled down to 20 marks (40% of the maximum marks).

The Sum of scaled-down marks scored in the report write-up/journal and average marks of two tests is the total CIE marks scored by the student.

Semester End Evaluation (SEE):

SEE marks for the practical course is **50 Marks**.

SEE shall be conducted jointly by the two examiners of the same institute, examiners are appointed by the University.

All laboratory experiments are to be included for practical examination.

(Rubrics) Breakup of marks and the instructions printed on the cover page of the answer script to be strictly adhered to by the examiners. OR based on the course requirement evaluation rubrics shall be decided jointly by examiners.

Students can pick one question (experiment) from the questions lot prepared by the internal /external examiners jointly.

Evaluation of test write-up/ conduction procedure and result/viva will be conducted jointly by examiners. General rubrics suggested for SEE are mentioned here, writeup-20%, Conduction procedure and result in -60%, Viva-voce 20% of maximum marks. SEE for practical shall be evaluated for 100 marks and scored marks shall be scaled down to 50 marks (however, based on course type, rubrics shall be decided by the examiners) Change of experiment is allowed only once and 10% Marks allotted to the procedure part to be made zero.

The duration of SEE is 03 hours

Suggested Learning Resources:

• Web Tutorial and ESRI guide books.